Tin tức
Bài viết gần đây
Doanh nghiệp đặt nhiều khóa học GD&T của V-Proud cho nhân sự: Khẳng định chất lượng và uy tín
Doanh nghiệp đặt nhiều khóa học GD&T của V-Proud cho nhân sự: Khẳng định chất lượng và uy tín 03/01/2025

Trong xu hướng toàn cầu hóa và chuyển đổi công nghiệp, việc đảm bảo chất lượng và độ chính xác trong thiết kế và sản xuất đã trở thành một yêu cầu bắt buộc. Trong bối cảnh đó, nhiều doanh nghiệp đã tìm đến các khóa đào tạo GD&T (Geometric Dimensioning and Tolerancing) như là một giải pháp tăng cường năng lực cho đội ngũ kỹ thuật. Tại Việt Nam, V-Proud đã trở thành địa chỉ đào tạo được nhiều doanh nghiệp tin tưởng.

V-Proud đào tạo GD&T cho doanh nghiệp FDI sản xuất linh kiện linh kiện ô tô của Hàn Quốc
V-Proud đào tạo GD&T cho doanh nghiệp FDI sản xuất linh kiện linh kiện ô tô của Hàn Quốc 19/11/2024

V-Proud rất vinh dự khi được hỗ trợ doanh nghiệp FDI sản xuất linh kiện ô tô hàng đầu Hàn Quốc tại miền Bắc. Chúng tôi đã mang đến khóa đào tạo GD&T giúp đội ngũ kỹ thuật hiểu sâu hơn, làm việc hiệu quả hơn và đáp ứng tốt các yêu cầu của thị trường quốc tế.

V-Proud tài trợ khóa đào tạo GD&T tại chương trình con quay đại chiến – triển lãm FBC 2024
V-Proud tài trợ khóa đào tạo GD&T tại chương trình con quay đại chiến – triển lãm FBC 2024 09/10/2024

Sự kiện trao tặng khóa học GD&T của V-Proud cho đội thắng cuộc không chỉ đánh dấu một cột mốc quan trọng trong chương trình Con Quay Đại Chiến tại triển lãm FBC 2024 mà còn thể hiện cam kết của V-Proud trong việc hỗ trợ và phát triển nguồn nhân lực chất lượng cao cho ngành cơ khí chính xác. Chúng tôi tin rằng, với những kiến thức chuyên sâu từ khóa học này, đội thi sẽ tiếp tục tỏa sáng và đạt được những thành công đáng kể trong tương lai.

Trí tuệ nhân tạo AI là gì? Các ứng dụng của AI trong sản xuất

04/05/2021 5610

Trong một cuộc khảo sát được thực hiện cách đây một thời gian của Forbes Insights về trí tuệ nhân tạo, 44% số người được khảo sát đến từ các ngành sản xuất ô tô và sản xuất đã xếp loại AI là rất quan trọng đối với chức năng sản xuất trong năm năm tới, trong khi gần một nửa 49% đã trả lời rằng để thành công, họ cần đến công nghệ này. Vậy trí tuệ nhân tạo AI và ứng dụng của nó trong sản xuất là gì?

Khái niệm Trí tuệ nhân tạo AI

AI hay trí tuệ nhân tạo là sự mô phỏng các quá trình trí tuệ của con người bằng máy móc, đặc biệt là hệ thống máy tính. Các quá trình này bao gồm học tập, lý luận và tự điều chỉnh. Một số ứng dụng của AI bao gồm các hệ thống chuyên gia tư vấn, nhận dạng giọng nói và thị giác máy tính. Trí tuệ nhân tạo đang tiến bộ vượt bậc và trở thành một yếu tố quan trong biến đổi thế giới của chúng ta về mặt xã hội, kinh tế và chính trị.

Lĩnh vực nghiên cứu AI được ra đời tại một hội thảo khoa học tại Đại học Dartmouth năm 1956. Những người tham dự bao gồm: Allen Newell (CMU), Herbert Simon (CMU), John McCarthy (MIT), Marvin Minsky (MIT) và Arthur Samuel (IBM) đã trở thành những người sáng lập và lãnh đạo nghiên cứu AI. Họ và các sinh viên của mình đã tạo ra các chương trình mà báo chí mô tả là “đáng kinh ngạc” tại thời điểm đó. Ngày nay, AI là một thuật ngữ bao gồm tất cả mọi thứ, từ robot tự động hóa quá trình đến robot thực tế. 

Với sự trợ giúp của AI, một lượng lớn dữ liệu có thể được phân tích để lập bản đồ thể hiện sự phân bổ của các quốc gia nghèo đói và biến đổi khí hậu, tự động hóa các hoạt động nông nghiệp và tưới tiêu, cá nhân hóa chăm sóc sức khỏe và học tập, dự đoán mô hình tiêu thụ, hợp lý hóa việc sử dụng năng lượng và quản lý chất thải. Ở quy mô doanh nghiệp, trí tuệ nhân tạo AI và ứng dụng của nó đóng vai trò phân tích và xác định các vấn đề trong vận hành thông qua dữ liệu hiệu quả hơn con người, từ đó cho phép các điều hành thấu hiểu hơn về doanh nghiệp của mình.

Trí tuệ nhân tạo có thể được phân loại theo nhiều cách. Người đầu tiên đã phân loại AI là AI yếu hoặc AI mạnh. Tuy nhiên, cách phân loại Trí tuệ nhân tạo AI được sử dụng nhiều hiện nay có nguồn gốc từ Arend Hintze, một giáo sư trợ lý sinh học tích hợp và khoa học máy tính và kỹ thuật tại Đại học bang Michigan. Ông đã phân loại AI thành bốn loại và những loại này như sau:

  • Loại 1: Máy phản ứng. 
  • Loại 2: Bộ nhớ hạn chế.
  • Loại 3: Lý thuyết về tâm trí
  • Loại 4: Tự nhận thức. 

Trí tuệ nhân tạo AI và các ứng dụng trong lĩnh vực sản xuất

  • Digital twin (Bản sao số) 

Digital twin (Bản sao số) là một bản sao kỹ thuật số của một vật thể thực tế, được tạo ra từ các luồng dữ liệu thu thập được từ các cảm biến gắn trong vật thể đó. Như vậy, bản sao số là hình ảnh phản chiếu song song của vật thể theo thời gian thực. Trong một số trường hợp, một bản sao số thể hiện cả tình trạng hiện tại và quá khứ của vật thể. Bản sao số là bước phát triển của công nghệ Internet of Things (IoT) trong công nghiệp, được kết hợp với kỹ năng học máy và trí tuệ nhân tạo.

Kỹ thuật bản sao số đặc biệt hữu ích khi làm việc với thiết bị từ xa. Các cảm biến được nhúng trong thiết bị sẽ thu thập dữ liệu về trạng thái, điều kiện làm việc hoặc vị trí theo thời gian thực. Cùng lúc đó, một hệ thống tính toán trên nền tảng điện toán đám mây sẽ nhận và xử lý tất cả dữ liệu mà các cảm biến gửi về. Hệ thống sẽ áp dụng công nghệ máy học đưa ra các phương án hoạt động, khám phá các khả năng phát sinh trên bản sao số. Từ đó đưa ra những điều chỉnh, dự báo có thể được áp dụng trực tiếp cho thiết bị vật lý. 

  • Bảo trì dự đoán

Thông thường, các nhà sản xuất sẽ ứng dụng phương pháp bảo trì dự phòng (Prevetative maintenance) – Thường xuyên kiểm tra các thiết bị máy móc và điều chỉnh chúng, kể cả lúc chưa cần thiết. Tuy nhiên, bảo trì dự phòng không dựa trên tình trạng thực tế của thiết bị, do đó, việc bảo dưỡng đôi khi trở nên dư thừa và lãng phí. Ngày nay, bảo trì dự đoán (Predictive Maintenance) sẽ giám sát tình trạng thực tế của thiết bị để dự đoán khi nào xảy ra hỏng hóc và tiến hành bảo trì máy móc trước khi sự cố xảy ra.

Để dự đoán các lỗi hỏng hóc có thể xảy ra, các nhà sản xuất sẽ dựa trên công nghệ IoT tích hợp cảm biến trên các thiết bị để báo cáo lại tình trạng theo thời gian thực. Tùy tình hình thực tế và bài toán được áp dụng mà mỗi nhà sản xuất sẽ chọn cho mình kĩ thuật dự đoán phù hợp nhất dựa trên: Độ rung, tạo ảnh nhiệt, phân tích sóng âm và sóng siêu âm, phân tích dầu, kiểm tra khí thải và giám sát tình trạng.

  • Thị giác máy tính

Người ta nhận ra rằng, thị giác của con người không thể đáp ứng được nhu cầu tìm ra những lỗi rất nhỏ trong quá trình sản xuất. Nhưng một cỗ máy được trang bị camera nhạy hơn gấp nhiều lần so với mắt thường trong tương lai có thể giải quyết bải toán này.

Cơ chế tạo nên thị giác máy tính được xây dựng từ các thuật toán máy học (Machine Learning) đối với một lượng lớn hình ảnh được thu thập trước. Cơ chế này cho phép máy móc không chỉ ghi nhận hình ảnh được cung cấp mà còn sử dụng trí tuệ nhân tạo để xử lý và học hỏi từ chúng. Nó thậm chí còn có thể gửi một cảnh báo ngay lập tức khi phát hiện ra một vấn đề hoặc khiếm khuyết. Công nghệ này được gọi là nhận dạng vấn đề tự động.

  • Generative Design — Thiết kế dựa trên thuật toán

Ứng dụng của Trí tuệ nhân tạo trong sản xuất cũng phát huy tác dụng thông qua một quy trình mới gọi là Generative Design — thiết kế dựa trên thuật toán. Nó hoạt động theo cơ chế: Nhà thiết kế hoặc kỹ sư nhập các mục tiêu thiết kế cùng với các tham số cho vật liệu, phương pháp sản xuất và các ràng buộc về chi phí trong phần mềm thiết kế chung. Phần mềm sau đó sẽ dựng lên tất cả các phương án có thể có dựa trên các thông số đó. Cuối cùng, nó sẽ sử dụng trí tuệ nhân tạo để kiểm tra và học hỏi từ biến thể được tạo ra và biết đâu là phương án thực sự tối ưu nhất. Công nghệ này sẽ thực sự hữu ích đối với các thiết kế đòi hỏi độ phức tạp cao và đặc biệt chính xác như thiết kế cánh cho máy bay, hoặc thiết kế cánh lướt gió hoặc pin cho xe điện mới.

Kết

Trong thực tế, trí tuệ nhân tạo AI và các ứng dụng còn ảnh hưởng đến mọi mặt của đời sống xã hội, không phải riêng trong lĩnh vực sản xuất. Tuy nhiên đối với hoạt động sản xuất, Trí tuệ nhân tạo AI không chỉ là động lực thúc đẩ sự phát triển mà nó còn là chía khóa mở ra tương lai đầy hứa hẹn cho các doanh nghiệp sử dụng hiệu quả công nghệ này.


Zalo

(84) 896 555 247