Tin tức
Bài viết gần đây
KSCAN-MAGIC: MỞ KHÓA THẾ GIỚI 3D VỚI SỨC MẠNH “5 TRONG 1” 
KSCAN-MAGIC: MỞ KHÓA THẾ GIỚI 3D VỚI SỨC MẠNH “5 TRONG 1”  16/04/2025

Hiện nay, trong ngành sản xuất công nghiệp, nhu cầu về kiểm tra chất lượng và số hóa sản phẩm ngày càng trở nên cấp thiết để nâng cao hiệu quả, giảm thiểu sai sót và thúc đẩy đổi mới. Việc đo lường chính xác các bộ phận phức tạp, từ chi tiết nhỏ đến cấu trúc lớn, đặt ra những thách thức không nhỏ. Vì lý do đó, KSCAN-Magic, dòng máy quét 3D cầm tay đa năng, ra đời như một giải pháp đột phá, tích hợp công nghệ quét tiên tiến để đáp ứng mọi yêu cầu khắt khe trong môi trường sản xuất hiện đại.

MÁY ĐO LASER TRACKER RADIAN 3D: GIẢI PHÁP ĐO LƯỜNG 3D HIỆU SUẤT CAO CHO MỌI NGÀNH CÔNG NGHIỆP
MÁY ĐO LASER TRACKER RADIAN 3D: GIẢI PHÁP ĐO LƯỜNG 3D HIỆU SUẤT CAO CHO MỌI NGÀNH CÔNG NGHIỆP 15/04/2025

Trong các ngành công nghiệp chủ chốt như hàng không vũ trụ, ô tô, năng lượng và nhiều lĩnh vực khác, Máy đo Laser Tracker Radian 3D của API Metrology đã khẳng định vị thế không thể thay thế. Với độ chính xác tuyệt đối và giao diện thân thiện, Radian 3D mang đến giải pháp đo lường toàn diện, giúp tối ưu hóa quy trình sản xuất, kiểm soát chất lượng nghiêm ngặt và nâng cao hiệu quả công việc.

GIẢI PHÁP QUÉT 3D THẾ HỆ MỚI: TRACKSCAN - HỆ THỐNG ĐO QUANG HỌC 3D SHARP
GIẢI PHÁP QUÉT 3D THẾ HỆ MỚI: TRACKSCAN - HỆ THỐNG ĐO QUANG HỌC 3D SHARP 14/04/2025

TrackScan-Sharp, bao gồm máy quét 3D di động i-Scanner và máy quét quang học i-Tracker, là thế hệ hoàn toàn mới của hệ thống đo lường quang học 3D của Scantech để đo các bộ phận quy mô lớn. Hệ thống này đưa phép đo quang học lên một tầm cao mới bằng cách cung cấp khoảng cách theo dõi lên đến 6 mét, phạm vi thể tích là 49 m3 và độ chính xác thể tích lên đến 0,049 mm (10,4 m3 ). 

Công nghệ mới giúp tạo ra điện từ nước thải

15/12/2020 2930

Các nhà khoa học của Nga đang phát triển công nghệ pin nhiên liệu vi sinh (MFCs) mới có thể giúp sản xuất điện thông qua quá trình ôxy hóa các chất hữu cơ bởi các vi sinh vật đặc biệt.

Kết quả nghiên cứu của các nhà khoa học thuộc Đại học Công nghệ Hóa học D. Mendeleev của Nga (MUCTR) đã được công bố trên tạp chí Energies.

Khả năng của các thiết bị này gần đây đã tăng lên đáng kể và các nhà khoa học coi việc kết hợp giữa nó với các hệ thống xử lý nước thải là một nguồn năng lượng xanh đầy hứa hẹn.

Một số vi sinh vật có khả năng kiếm ăn trong môi trường không có ôxy bằng cách ôxy hóa các chất hữu cơ đồng thời giải phóng electron ra môi trường bên ngoài.

Nguồn vi sinh vật là bùn hoạt tính được sử dụng để xử lý nước thải.

Nguồn vi sinh vật là bùn hoạt tính được sử dụng để xử lý nước thải.

Vào đầu thế kỷ XX, các nhà khoa học đã cố gắng sử dụng những vi sinh vật như vậy để sản xuất điện, nhưng cho đến gần đây, sức mạnh của MFCs vẫn chưa đáng kể. Pin vi sinh có thể chạy trên nhiều loại chất hữu cơ, bao gồm nước thải hoặc chất thải công nghiệp.

Các nhà khoa học giải thích rằng việc tìm ra cấu hình MFCs tối ưu không phải là một nhiệm vụ dễ dàng, đòi hỏi mô hình toán học có tính đến vật liệu điện cực, nồng độ cơ chất hữu cơ và tốc độ nạp liệu, độ pH của môi trường, hình dạng hệ thống và các yếu tố khác.

"Chúng tôi đã phát triển một mô hình MFCs toàn diện vượt qua các chất tương tự một cách chi tiết, trong đó đã tính toán đồng thời sự phát triển của quần thể vi sinh vật, tốc độ tiêu thụ và hình thành chất hữu cơ dễ ôxy hóa, sự di chuyển điện của proton giữa các điện cực, sự khuếch tán của các thành phần hữu cơ động học của phản ứng điện hóa.

Sử dụng mô hình này, chúng tôi đã tính toán các quy luật cơ bản mới của hệ thống và tối ưu hóa một trong những đặc điểm quan trọng - nồng độ của chất hữu cơ", phó giáo sư Violetta Vasilenko từ Đại học Công nghệ Hóa học D. Mendeleev của Nga cho biết.

Một dung dịch glucose trong một hỗn hợp muối được dùng làm chất nền trong pin. Nguồn vi sinh vật là bùn hoạt tính được sử dụng để xử lý nước thải.

Các nhà khoa học đã tinh chỉnh các giá trị của các thông số được nhúng trong mô hình dựa trên kết quả thí nghiệm và sau đó sử dụng mô hình để tính toán nồng độ tối ưu của glucose trong dung dịch dinh dưỡng. Tương tự, các thông số MFCs quan trọng khác có thể được tối ưu hóa bằng cách sử dụng mô hình đề xuất.

Theo Anatoly Antipov, nhà nghiên cứu hàng đầu tại Khoa Hóa học tại Đại học Tổng hợp Lomonosov Moscow, nhu cầu về các loại máy phát điện sử dụng nguyên liệu hữu cơ tái tạo đang không ngừng tăng lên trong bối cảnh mức tiêu thụ điện tăng đều đặn.

"Hoạt động của MFCs được xác định bởi một tập hợp các yếu tố phức tạp, từ sự phát triển của môi trường vi khuẩn đến động học của các phản ứng điện cực diễn ra. Do đó, việc tối ưu hóa thử nghiệm của MFCs thường trở thành một nhiệm vụ cực kỳ lớn. Mô hình được tạo ra bởi các đồng nghiệp từ MUCTR giúp lựa chọn các thông số chính dựa trên các dự báo toán học, do đó giảm đáng kể khối lượng thí nghiệm", Anatoly Antipov cho biết.

Trong tương lai, các nhà khoa học của MUCTR đang có kế hoạch sử dụng mô hình mới để phát triển một hệ thống hybrid xử lý nước thải với phát điện đồng bộ.

Nghiên cứu được thực hiện bởi các nhà khoa học từ Khoa Công nghệ Máy tính Thông tin và Khoa Công nghệ Sinh học thuộc Đại học Công nghệ Hóa học D. Mendeleev của Nga cùng với các nhà nghiên cứu từ Viện Hóa lý và Điện hóa Frumkin thuộc Viện Hàn lâm Khoa học Nga (IPCE RAS) và Đại học Genoa (Ý).

Nguồn: khoahoc.tv


Zalo

(84) 896 555 247